

JVM Deep DiveJVM Deep Dive
Daniel Mitterdorfer, comSysto GmbHDaniel Mitterdorfer, comSysto GmbH

@dmitterd@dmitterd

https://twitter.com/dmitterd

Behold! It will get scary.Behold! It will get scary.

TopicsTopics
Illusions by (J)VMs
Interpreter
JIT Compiler
Memory

IllusionsIllusions

Based on A JVM Does That???

http://www.azulsystems.com/blog/wp-content/uploads/2011/03/2011_WhatDoesJVMDo.pdf

Write Once, Run AnywhereWrite Once, Run Anywhere
One "Binary" for All Platforms
Consistent Memory Model (Java Memory Model)
Consistent Thread Model

Bytecodes Are Fast (JITing)Bytecodes Are Fast (JITing)

Infinite Heap (GarbageInfinite Heap (Garbage
Collection)Collection)

What "is" a JVM?What "is" a JVM?
The JVM is specified in .

There are multiple implementations:
The Java® Virtual Machine Specification

HotSpot
JVM reference implementation; part of OpenJDK and Oracle JDK

Azul Zing
Commercial performance optimized JVM based on HotSpot with a low-pause GC (called C4) and many
other features

J9
Implementation by IBM

JRockit
Implementation by Bea. Now integrated into HotSpot.

...

http://docs.oracle.com/javase/specs/jvms/se8/html/index.html

Internal Structure of the Hot-Internal Structure of the Hot-
Spot JVMSpot JVM

Based on "Java Performance", p. 56

Let's start simpleLet's start simple
What happens between...

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

... and ...
Hello World!

"Compile""Compile"
javac HelloWorld.java

HelloWorld.class HexdumpedHelloWorld.class Hexdumped
0000000 ca fe ba be 00 00 00 34 00 1d 0a 00 06 00 0f 0
0000010 00 10 00 11 08 00 12 0a 00 13 00 14 07 00 15 0
0000020 00 16 01 00 06 3c 69 6e 69 74 3e 01 00 03 28 2
0000030 56 01 00 04 43 6f 64 65 01 00 0f 4c 69 6e 65 4
0000040 75 6d 62 65 72 54 61 62 6c 65 01 00 04 6d 61 6
0000050 6e 01 00 16 28 5b 4c 6a 61 76 61 2f 6c 61 6e 6
0000060 2f 53 74 72 69 6e 67 3b 29 56 01 00 0a 53 6f 7
0000070 72 63 65 46 69 6c 65 01 00 0f 48 65 6c 6c 6f 5
0000080 6f 72 6c 64 2e 6a 61 76 61 0c 00 07 00 08 07 0
0000090 17 0c 00 18 00 19 01 00 0c 48 65 6c 6c 6f 20 5
00000a0 6f 72 6c 64 21 07 00 1a 0c 00 1b 00 1c 01 00 0
00000b0 48 65 6c 6c 6f 57 6f 72 6c 64 01 00 10 6a 61 7
00000c0 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 01 00 1
00000d0 6a 61 76 61 2f 6c 61 6e 67 2f 53 79 73 74 65 6d
00000e0 01 00 03 6f 75 74 01 00 15 4c 6a 61 76 61 2f 6
00000f0 6f 2f 50 72 69 6e 74 53 74 72 65 61 6d 3b 01 0
0000100 13 6a 61 76 61 2f 69 6f 2f 50 72 69 6e 74 53 7
0000110 72 65 61 6d 01 00 07 70 72 69 6e 74 6c 6e 01 0
0000120 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 7
0000130 69 6e 67 3b 29 56 00 21 00 05 00 06 00 00 00 0
0000140 00 02 00 01 00 07 00 08 00 01 00 09 00 00 00 1d
0000150 00 01 00 01 00 00 00 05 2a b7 00 01 b1 00 00 0
0000160 01 00 0a 00 00 00 06 00 01 00 00 00 01 00 09 0
0000170 0b 00 0c 00 01 00 09 00 00 00 25 00 02 00 01 0
0000180 00 00 09 b2 00 02 12 03 b6 00 04 b1 00 00 00 0
0000190 00 0a 00 00 00 0a 00 02 00 00 00 03 00 08 00 0
00001a0 00 01 00 0d 00 00 00 02 00 0e
00001aa

Welcome to the MatrixWelcome to the Matrix

Structure of a Structure of a .class.class file file

Beware: This is almost criminally simplified.

DemoDemo
javap -verbose -c HelloWorld.class

The JVM: A stack-basedThe JVM: A stack-based
machinemachine

int sum = op0 + op1;

↓
20: iload_1
21: iload_2
22: iadd
23: istore_3

Bytecode Execution:Bytecode Execution:
StraightforwardStraightforward

//pseudocode
for(;;) {
 current_byte_code = read_byte_code_at(program_counte
 switch(current_byte_code) {
 case iadd: handle_iadd(); break;
 case iload_1: handle_iload_1(); break;
 // ...
 }
}

Bytecode Execution: FasterBytecode Execution: Faster
1. Generate assembler code at startup for each bytecode
2. Execute generated code for each bytecode

Better optimized for current hardware, no more bytecode
dispatching in C++

Example: Generated code forExample: Generated code for
iaddiadd

mov eax,DWORD PTR [rsp] ; take parameters from s
add rsp,0x8
mov edx,DWORD PTR [rsp]
add rsp,0x8
add eax,edx ; add parameters
movzx ebx,BYTE PTR [r13+0x1] ; dispatch next byte cod
inc r13
movabs r10,0x109c72270
jmp QWORD PTR [r10+rbx*8]

Slightly simplified

Take AwaysTake Aways
javac produces .class files which reflect the Java code
.class files contain platform independent byte codes
Look at byte codes with javap
The interpreter is a complex beast

JIT compilationJIT compilation

Interpretation only?Interpretation only?
Compile upfront?Compile upfront?

Compile at startup?Compile at startup?

JIT CompilationJIT Compilation
Just In Time
"Profile-guided" optimization
Compile only hot code paths ("hot spots")

Triggering a CompilationTriggering a Compilation
Based on interpreter events. Overflow of:

Method invocation counter (methods)
Backedge counter (loop invocations)

JIT Compilation StrategiesJIT Compilation Strategies
Client Compiler (C1)
Faster startup, less compilation overhead, less optimizations

Server Compiler (C2)
Takes time, more aggressive optimizations

Tiered Compilation
First compile with C1, then with C2. Active by default, deactivate with -XX:-TieredCompilation

Runtime ProfilingRuntime Profiling
Invariants: Loaded classes
Statistics: Branches taken
...

Common OptimizationsCommon Optimizations
Dead Code Elimination
Method Inlining
Class Hierarchy Analysis
Lock elision/coarsening
Loop transformations

... and many more

IntrinsicsIntrinsics
Hand-optimized "shortcuts" for certain Java methods

Example:Example:
Math#abs(double)Math#abs(double)
return (a <= 0.0D) ? 0.0D - a : a;

Math#abs(double)Math#abs(double) as as
BytecodeBytecode

0: dload_0
1: dconst_0
2: dcmpg
3: ifgt 12
6: dconst_0
7: dload_0
8: dsub
9: goto 13
12: dload_0
13: dreturn

x86 Intrinsicsx86 Intrinsics
Math.abs(double)

↓
andpd $dst, [0x7fffffffffffffff]

JIT Compilation StrategyJIT Compilation Strategy
Optimize aggressively based on current runtime profile
Deoptimization: Revert to interpretation on violated
assumptions

Constant back and forth between interpreter and JIT compiler

Some Reasons forSome Reasons for
DeoptimizationDeoptimization
Unexpected null encountered
Method is too old

pp

SafepointsSafepoints
How to "remove" compiled machine code given that multiple

threads are constantly in flight?

1. Halt every application thread in the JVM ("safepoint")
2. Replace machine code with interpreted code

SafepointsSafepoints
Safepoints are used for different tasks in the JVM, for example:

Garbage Collection
Thread Dumps
Deadlock Detection
Revocation of Biased Locking

Embrace the JITEmbrace the JIT
Use short methods for readability (inlining)
Use standard library methods (may use intrinsics)
Use inheritance but take care in performance critical code

Inspecting CompilationInspecting Compilation
Use -XX:+PrintCompilation
Use JIT Watch

https://github.com/AdoptOpenJDK/jitwatch

DemoDemo
Intrinsics demo

Take AwaysTake Aways
JIT compilation makes Java code fast
JIT compilation relies on runtime information
Cooperation needed between runtime, interpreter and JIT
compiler

MemoryMemory

Memory RegionsMemory Regions
Stack
Each Java thread has its own stack

Heap
One heap for each Java process

Metaspace (Java 8+)
contains class data; native memory, grows unlimited by default

Code Cache
contains JIT compiled code

Garbage CollectorsGarbage Collectors

Memory Management on theMemory Management on the
JVMJVM

1. Object x = new Object();
2. There is no step 2

Heap LayoutHeap Layout
Young Generation
Contains newly instantiated objects

Old Generation (also: Tenured Generation)
Contains older objects that survived multiple garbage collections

Weak Generational HypothesisWeak Generational Hypothesis
Most objects survive for only a short period of time

Source

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/generations.html#sthref18

Weak Generational HypothesisWeak Generational Hypothesis
Most GC algorithms on the JVM are based on this assumption

Split the heap into "generations"
Collect generations separately

Result: Increased GC performance

Latency vs. ThroughputLatency vs. Throughput
Consider a pipe:

Garbage Collector TradeoffsGarbage Collector Tradeoffs
Different algorithms have tradeoffs typically in those areas:

Latency
Human-facing systems need fast response times

Throughput
Batch processing systems need more throughput

Memory
Waste as little as possible

Garbage Collection (GC)Garbage Collection (GC)
AlgorithmsAlgorithms

Serial
Parallel / Parallel Old
Concurrent Mark-Sweep (CMS)
Garbage First (G1)
Shenandoah (Alpha version)
C4 (Zing only)

Serial GCSerial GC
-XX:+UseSerialGC
Mostly for client applications with small heaps (<< 1 GB)

Image based on "Java Performance", page 86

Parallel GC / Parallel Old GCParallel GC / Parallel Old GC
-XX:+UseParallelGC (Young Generation)
-XX:+UseParallelOldGC (Old Generation)
High throughput, higher pause times

Image based on "Java Performance", page 86

Concurrent Mark-Sweep (CMS)Concurrent Mark-Sweep (CMS)
-XX:+UseConcMarkSweepGC
Affects only the old generation
Less throughput, smaller pause times

Image based on "Java Performance", page 88

Garbage First (G1)Garbage First (G1)
-XX:+UseG1GC
Vastly different heap layout. Intended for large heaps (>> 8
GB)
Less throughput, smaller pause times

Other GC AlgorithmsOther GC Algorithms
For very large heaps of around 100 GB and more:

Shenandoah (Red Hat)
C4 (Azul): By far lowest pause times of all GCs for large heaps

GC TuningGC Tuning
Know your application's behavior and SLAs
Turn the least amount of knobs (70+ GC related JVM flags)
Performance mantra: Measure, measure, measure

GC TuningGC Tuning
Starting point:

-Xloggc:gc.log -XX:+PrintGCDetails -XX:+PrintGCDateStam

Use tools like for analysisGCViewer

https://github.com/chewiebug/GCViewer

Demo: Inspecting the GCDemo: Inspecting the GC
Based on by Gil TeneMinorGC demo

https://github.com/giltene/GilExamples/tree/master/MinorGC

Demo: Mostly Young-GenDemo: Mostly Young-Gen
GarbageGarbage

Demo: Mostly Young-GenDemo: Mostly Young-Gen
Garbage + 5% Object RefsGarbage + 5% Object Refs

Take AwaysTake Aways
GC helps with memory management
Different algorithms - Know their characteristics

What we haven't seenWhat we haven't seen
Class loading
JMX and Production Monitoring
Memory Model
Thread Model
...

Getting started yourselfGetting started yourself
Download the OpenJDK source code at

and dive in!
http://openjdk.java.net

http://openjdk.java.net/

SlidesSlides
http://bit.ly/jvm-deep-dive-ljug

http://bit.ly/jvm-deep-dive-ljug

Q & AQ & A

Image CreditImage Credit
 by (License:)

 by (License:
)

 by (License:)
 by (License:)

 by (License:)
 by (License:)

 by (License:)
 by (License:)

 by (License:
)

 by (License:)
 by (License:)

-Hydra- arvalis cc by-nc-nd 3.0
Escher ladder - escalera de Escher rromer cc by-
nc-sa 2.0
nowhere fast... Mikel cc by-nc-sa 2.0
Endless Maurice cc by-nc-sa 2.0
Movie-Matrix-wallpaper Tony Werman cc by 2.0
Jet Dragsters J. Michael Raby cc by-nc-nd 2.0
Signpost JMC Photos cc by-nc-nd 2.0
Stop! Go! Nana B Agyei cc by 2.0
1GB DDR3 Memory Module William Warby cc by
2.0
_DSC8852 Rusty Stewart cc by nc nd 2.0
Night mechanic Ali Bindawood by-nd

None of the pictures have been modified or altered.

http://arvalis.deviantart.com/art/Hydra-466822569
http://arvalis.deviantart.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.flickr.com/photos/rromer/5997607290
https://www.flickr.com/photos/rromer/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/atzu/2251278552
https://www.flickr.com/photos/atzu/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/haagsuitburo/7495910898
https://www.flickr.com/photos/haagsuitburo/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/tt2times/2568645910/
https://www.flickr.com/photos/tt2times/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/jmr-holdit/8014284292
https://www.flickr.com/photos/jmr-holdit/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/jmcphotos/2131206015
https://www.flickr.com/photos/jmcphotos/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/nanagyei/8590967532
https://www.flickr.com/photos/nanagyei/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/wwarby/5026552269
https://www.flickr.com/photos/wwarby/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/rustystewart/3696712353
https://www.flickr.com/photos/rustystewart/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/aliab55/15174758674
https://www.flickr.com/photos/aliab55/
https://creativecommons.org/licenses/by-nd/2.0/

